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This paper presents the development of a discrete adjoint approach for accurate
computation of shape sensitivities in steady laminar flows governed by the compressible
Navier-Stokes equations. The adjoint laminar flow solver is generated by Algorithmi-
cally Differentiating the underlying primal solver. It is well-known that the adjoint
solvers based on black-box differentiation demand significant computational resources,
both in terms of memory and run-time. To enhance the computational efficiency, var-
ious advanced algorithmic differentiation techniques are employed. The performance
of the adjoint solver in accurate computation of shape sensitivities is assessed by ap-
plying it to the test cases of laminar flow around NACA 0012 airfoil and analytical 3D
body of revolution. Sensitivities based on the adjoint code are compared with the val-
ues obtained from direct methods such as finite differences and corresponding tangent
linear code. Shape sensitivity plots are presented to analyse the regions that contribute
to the desired objective function.
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I. Introduction
Aerodynamic optimisation involving Navier-Stokes equations has been an area of significant relevance

to aerospace industry. Many optimisation problems in this field of research can be characterised by an
objective function that is to be maximised or minimised, a set of flow field and geometry related constraints
and a large number of control variables. The optimal set of control variables that maximises or min-
imises the desired objective function is then obtained by employing the gradient based optimisation algorithms.

Central to the success of gradient algorithms is accurate and efficient computation of the sensitiv-
ity gradients of the given objective function with respect to the control variables. Once evaluated, the
sensitivities can then be used to drive an optimisation procedure until a desired convergence in the objective
function is achieved. In general, the solution techniques for the evaluation of sensitivities can be classified
into two groups, namely, direct methods and adjoint methods. The direct methods include finite differences,
complex Taylor series expansion (CTSE) method and tangent linear mode differentiation (also known as
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forward mode differentiation). Although easy to implement, a major drawback of these methods is that
they give sensitivity information with respect to only one control variable. In order to find the complete
gradient vector, numerical simulations need to be performed separately for each control variable. Thus the
computational costs of evaluating sensitivities grow linearly with the number of control variables. For design
optimisation problems involving a large number of control variables, these costs can become prohibitively
expensive. On the other hand, the adjoint methods compute the complete gradient vector at an expense that is
independent of the number of control variables. Due to this advantage, the use of adjoint methods in gradient
based optimisation has received much attention.

The adjoint methods can be classified into continuous [1] or discrete [2] versions, depending on
the order in which the linearisation and discretisation of the governing PDEs is performed. The discrete
approach is preferred over the continuous as it yields an adjoint solver that is robust and consistent to the
primal solver [3]. During its initial years, the discrete adjoint solvers were developed using the hand-discrete
approach, where the linearisation of the adjoint equations is performed by hand. With the continuous
development of Algorithmic Differentiation (AD) techniques [4], one can develop the discrete adjoint solvers
by directly differentiating the underlying primal flow solvers. An advantage of this approach is that AD
tools can perform the exact differentiation of all terms in the primal solver with much ease. Therefore, the
derived adjoint solver is always consistent to the primal and hence gives accurate sensitivities at any residual
level achieved by the primal solver. Furthermore, the adjoint solver inherits the asymptotic convergence and
robustness of the primal solver [4]. In [5–7], this approach has been successfully employed to develop robust
discrete adjoint solvers for steady and unsteady flows.

In this paper, we develop a discrete adjoint approach based on AD for accurate computation of
shape sensitivities in laminar flows governed by compressible Navier-Stokes equations. The rest of the paper
is organised as follows. Section II presents the details pertaining to the construction of an efficient and
accurate discrete adjoint approach. In section III, numerical results are shown for standard test cases to verify
the accuracy of the adjoint sensitivities. Furthermore, a detailed analysis of shape sensitivities for several
objective functions of aerodynamic importance are presented. Finally, conclusions and future research plans
are presented in Section IV.

II. A discrete adjoint approach for shape sensitivities
Consider the problem of finding an optimal shape that maximises or minimises an objective function of

particular interest in aerodynamic applications. This amounts to a PDE-constrained optimisation problem,
which, in its general form, can be defined as

max/min J (U, α)

subject to C (U, α) = 0
(1)

where J is a scalar objective function like the aerodynamic lift or drag coefficients, U is the conserved vector
and α is the vector of control variables comprising the shape coordinates (x, y, z) that define the geometry of
the configuration. In the present work, C (U, α) = 0 represents the compressible Navier-Stokes equations
along with boundary conditions. In the semi-discrete form, the constraints can be written as

dU
dt
+ Rs (U, α) = 0 (2)

where, Rs (U, α) is the discrete residual vector obtained after the finite volume discretisation of the spatial
derivatives in the governing equations. Approximating the temporal derivative using the first order forward
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difference formula, the state-update formula can be written as

Un+1 = Un − ∆tRs (U
n, α) (3)

Here, n represents a pseudo-time iteration, since we are interested in the steady-state solution. The state-update
formula can be written in the fixed point form as

Un+1 = G (Un, α) (4)

Here, G represents an iteration of the finite volume scheme employed for the numerical solution of the
Navier-Stokes equations. The above fixed point iteration converges to the steady state solution U , given by

U = G (U, α) (5)

In the discrete form, the optimisation problem defined in eq. (1) can be formulated as

max/min J (U, α)

subject to U = G (U, α)
(6)

The Lagrangian functional associated with the above constrained optimisation problem is given by

L (U,Ψ, α) = J (U, α) − ΨT {U − G (U, α)} (7)

Here Ψ is the adjoint state vector or the Lagrange multiplier. The first order necessary conditions (KKT
conditions) for optimality of the Lagrangian function are given by

∂L
∂Ψ
= 0 (State equations) (8a)

∂L
∂U
= 0 (Adjoint equations) (8b)

∂L
∂α
= 0 (Control equation) (8c)

From eq. (8b), the discrete adjoint equations can be derived in the fixed point form as

Ψn+1 =

(
∂G
∂U

)T
Ψn +

(
∂J
∂U

)T
(9)

A general notation for the adjoint fixed point iterative scheme can be written as

Ψn+1 = G (Ψn,U, α) (10)

where G represents a pseudo-time iteration of the discrete adjoint solver for compressible Navier-Stokes
equations. The above fixed point iteration converges to the adjoint solution Ψ, given by

Ψ = G (Ψ,U, α) (11)

Finally, the primal and adjoint solutions from eqs. (5) and (11) are substituted in eq. (8c) to evaluate the
sensitivities of the objective functional with respect to the shape variables as

dL
dα
=
∂J
∂α
+ ΨT ∂G

∂α
(12)

3



In the current work, the pseudo-time derivative in the governing equations is approximated with the four stage
SSP-RK3 scheme [8]. However, for the sake of simplicity, the mathematical formulation of the discrete
optimisation problem and the derivation of the discrete adjoint Navier-Stokes equations are shown with first
order forward difference formula. For higher order temporal schemes, the adjoint equations can be derived in
a similar fashion.

From eqs. (9) and (12), it is clear that accurate computation of the shape sensitivities require the
exact differentiation of J and G. Note that the primal fixed point iterator G consists of the discrete residuals
due to convective and viscous fluxes, terms related to higher order reconstruction scheme with limiters and
also the Runge-Kutta scheme. The exact differentiation of these terms by hand is laborious and prone to errors.
Any approximation made by neglecting the differentiation of these terms will result in inaccurate computation
of sensitivities [9]. One way to circumvent this difficulty is by employing Algorithmic Differentiation (AD)
techniques. An advantage of this approach is that AD tools can perform the exact differentiation of these
terms with much ease.

In this research, a discrete adjoint Navier-Stokes solver is developed by algorithmically differenti-
ating the underlying primal solver. To ease the process of differentiation, the AD tool Tapenade [10] has
been employed. Note that, at the first step, the differentiation is performed in a black-box fashion by coupling
the subroutine that computes the geometric quantities such as cell volumes, surface areas and normals with
the routines that evaluate the objective function and perform the primal fixed point iteration. An advantage of
integrating these subroutines is that the resulting adjoint solver directly yields the shape sensitivities along
with adjoints of the flow field variables. However, a major drawback of this approach is that the discrete
adjoint code demands expensive memory and computational time. To explain this in detail, Algorithms (1)
and (2) show the general structure of the primal Navier-Stokes solver and the corresponding black-box AD
based discrete adjoint solver. From Algorithm (2), it is clear that the black-box approach stores the primal
flow solutions Un for all N iterations that yield a desired convergence. The stored solutions are then used to
compute the adjoints in the reverse sweep. Obviously, for numerical simulations on finer grids with large
values of N , the storage costs can become very expensive. One way to circumvent the storage of primal
solutions is by employing the reverse accumulation technique [11]. This approach makes use of the iterative
structure of the adjoint fixed point scheme in eq. (10). From this equation, it is clear that the adjoint solver
requires only the converged primal solution U . The structure of an efficient adjoint solver based on this
technique is shown in Algorithm (3). Here, M represents the number of pseudo-time iterations required for
the convergence of adjoint solution. Note that the resulting adjoint solver is still consistent to the primal and
computes the shape sensitivities as in eq. (12). Numerical investigations have shown that the run time of the
optimised adjoint code is around a factor of 6 compared to the primal code. The performance of the discrete
adjoint Navier-Stokes solver in accurate computation of shape sensitivities is demonstrated in numerical
results.

Algorithm 1: Primal Navier-Stokes Solver
Compute geometic quantities
Initialize U0

for n← 0 to n < N do
perform the primal iteration Un+1 = G(Un, α)

end
return Objective function J(UN, α)
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Algorithm 2: Black-box AD based adjoint Navier-Stokes solver
Compute geometric quantities
Initialize U0

for n← 0 to n < N do
store (Un)

perform the primal iteration Un+1 = G(Un, α)
end
compute the objective function J(UN, α)
Initialize ΨN

for n← N − 1 to n ≥ 0 do
perform the adjoint iteration Ψn = G(Ψn+1,Un, α)
retrieve (Un)

end
return Shape sensitivities dL

dα =
∂J
∂α + Ψ

T ∂G
∂α

Algorithm 3: Efficient adjoint Navier-Stokes solver
Compute geometric quantities
Initialize U0

for n← 0 to n < N do
perform the primal iteration Un+1 = G(Un, α)

end
compute the objective function J(UN, α)
Initialize Ψ0

for n← 0 to n < M do
perform the adjoint iteration Ψn+1 = G(Ψn,UN, α)

end
return Shape sensitivities dL

dα =
∂J
∂α + Ψ

T ∂G
∂α

III. Numerical Results
In this section, we present the numerical results to demonstrate the performance of the discrete adjoint

Navier-Stokes solver in accurate computation of shape sensitivities. The test cases under investigation are:
Laminar flow past NACA 0012 airfoil and analytical 3D body of revolution. The primal and adjoint laminar
flow simulations are performed with the CFD codes UG3 and UG3A respectively [12]. UG3 is an unstructured
higher-order accurate code for compressible flows, developed at the Centre for Applicable Mathematics, TIFR,
Bengaluru. Its discrete version, UG3A is developed at the BITS Pilani, Hyderabad Campus. Since the adjoint
code is generated by exactly differentiating the primal code, UG3A retains all features of UG3. The primal and
adjoint solvers are parallelised using MPI with PETSc libraries.

A. Laminar flow past NACA 0012 airfoil
Transonic laminar flow over the NACA 0012 airfoil is computed with Mach number, M = 0.8, Reynolds

number, Re = 500 and angle of attack, AoA = 10o. The computational domain is a C-grid with 32, 706
hexahedra. The airfoil boundary consists of 337 grid points. The flow results in a steady state solution with a
small supersonic region just above the shoulder region and a separation zone covering considerable part on
the suction side of the airfoil. Furthermore, it also leads to two recirculation zones near the trailing edge. The
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computed lift and drag coefficients are shown in Table 1. These coefficients are in good agreement with the
reference values in [13].

Code Coefficient of lift (Cl) Coefficient of Drag (Cd)

UG3 0.4328 0.2689

Swanson 0.4364 0.2750

Table 1 Laminar flow past NACA 0012 airfoil. Comparison of the lift and drag coefficients.

In order to verify the adjoint solver, the objective functions for the present case are defined as the lift and
drag coefficients. The control variables are the x and y coordinates of the grid points on the airfoil. We then
have 674 control variables.

Tables (2) and (3) show a comparison of sensitivities with respect to x and y coordinates at 3
points on the suction side of the airfoil. Note that point P1 is located near the leading edge, P2 near
the mid chord and P3 near the trailing edge of the airfoil. From these tables it can be observed that
the shape sensitivities based on the discrete adjoint code are in excellent agreement with the values
obtained from the second order finite differences with a step size of δ = 10−7. Furthermore, the adjoint
sensitivities match even better with the values obtained from the tangent linear code. Note that the
tangent linear or the so-called forward derivative code is generated by differentiating the primal laminar
code in tangent mode. For large number of control variables, this approach is not feasible as the com-
putational costs grow linearly. However, it is very useful in the development and verification of the adjoint code.

Figures 1 and 2 respectively show the vector plots of the sensitivity gradients of the lift and drag
coefficients with respect to the shape variables. These plots show that for both the objective functions,
maximum sensitivities are observed near the trailing edge of the airfoil. Apart from this region, significant
sensitivities are noticed on the upper portion of the airfoil starting from the stagnation point till the region of
attachment, which is about 0.36 chords. We can also notice that the sensitivities in the separation zone are
either small or negligible. The sensitivity information can be used to perturb the shape in the descending
direction of the gradient to minimise the drag coefficient.

Point Objective function Finite Differences Tangent linear code Discrete adjoint code

P1
Cl 0.0058443281 0.005845318435566 0.005845318435892
Cd -0.0056312158 -0.005631378641497 -0.005631378643819

P2
Cl 0.0059151730 0.005914341734872 0.005914341734252
Cd -0.0004255176 -0.000425123350878 -0.000425123350820

P3
Cl -0.0833677216 -0.083367330021174 -0.083367330021475
Cd 0.0033024670 0.003302091528395 0.003302091520875

Table 2 Comparison of the sensitivities with respect to the shape variable x.
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Point Objective function Finite Differences Tangent linear code Discrete adjoint code

P1
Cl 0.0119872105 0.011981339551730 0.011981339551420
Cd 0.0084285364 0.008425489132079 0.008425489132419

P2
Cl 0.0130814907 0.013081373405311 0.013081373405304
Cd -0.0008615843 -0.000869588688824 -0.000869588688070

P3
Cl -0.5028925409 -0.50289753508449 -0.50289753508184
Cd -0.0364802861 -0.036487124781490 -0.036487124781374

Table 3 Comparison of the sensitivities with respect to the shape variable y.
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Fig. 1 Laminar flow past NACA 0012 airfoil. Sensitivities of the lift coefficient with respect to the
shape variables.
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Fig. 2 Laminar flow past NACA 0012 airfoil. Sensitivities of the drag coefficient with respect to the
shape variables.
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B. Laminar flow past analytical 3D half-body of revolution
The next test case under investigation is the subsonic laminar flow past the analytical 3D half-body of revo-

lution [14]. Numerical simulations are performed with Mach number, M = 0.5, Reynolds number, Re = 5000
and angle of attack, AoA = 1o. The computational domain consists of around 3.6 million grid points. The
surface of the body is resolved with 8, 783 grid points. For this test case, the objective function is considered as
the drag coefficient. One set of control variables are the x, y and z coordinates of the grid points that define the
surface of the body of revolution. Apart from the shape variables, we are also interested in the sensitivities of
the objective function with respect to the surface pressure distribution. This results in 35, 132 control variables.

In order to demonstrate the accuracy of the adjoint solver on this test case, Table 4 shows a com-
parison of shape sensitivities at two grid points near the stagnation point. It can be observed that the
sensitivities based on the adjoint solver are in very good agreement with the values obtained from direct
methods.

Figure (3) shows the sensitivity gradients of the drag coefficient with respect to the shape vari-
ables x and y. Figure (4) shows the primal pressure contours and the adjoint pressure contours. Here, adjoint
pressure implies the sensitivities of the drag coefficient with respect to the pressure distribution on the surface
of the body. These plots clearly show the regions that significantly contribute to the defined objective function.

Point Sensitivity Finite Differences Tangent linear code Discrete adjoint code

P1

∂Cd

∂x -0.000111425821314 -0.000111713290849 -0.000111713252207
∂Cd

∂y 0.001898371622554 0.001890016076619 0.001890016079188
∂Cd

∂z -0.000475473840471 -0.000470129023309 -0.000470129021143

P2

∂Cd

∂x 0.000174027866295 0.000172374358211 0.000172374357936
∂Cd

∂y -0.001016720876650 -0.001016847747203 -0.001016847719231
∂Cd

∂z -0.000114856483818 -0.000114025201481 -0.000114025200578

Table 4 Comparison of the sensitivities with respect to the shape variables x, y, z.

IV. Conclusions
This paper outlined the development of a discrete adjoint method for accurate computation of shape

sensitivities in compressible laminar flows. The adjoint Navier-Stokes solver was developed by algorithmically
differentiating the underlying primal solver. The performance of the adjoint solver in accurate computation of
sensitivities was assessed by applying to the test cases of transonic flow past NACA 0012 airfoil and subsonic
flow over the analytical half-body of revolution. Numerical results have shown that the adjoint solver is
consistent to the primal as the shape sensitivities based on the adjoint code were in excellent agreement
with the values obtained from finite differences and tangent linear code. This can be attributed to the exact
differentiation of all terms in the primal solver.

Further research is under progress to extend the discrete adjoint solver from laminar to turbulent
flows governed by the Reynolds-averaged Navier Stokes (RANS) equations. Efforts are also underway to
extend the adjoint solvers to unsteady flows.
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(a) Sensitivities w.r.t. the shape variable x (b) Sensitivities w.r.t. the shape variable y

Fig. 3 Laminar flow past the half-body of revolution. Sensitivities of the drag coefficient with respect
to the shape variables x and y.

(a) Pressure contours (b) Adjoint pressure contours

Fig. 4 Laminar flow past the half-body of revolution. Sensitivities of the drag coefficient with respect
to the surface pressure.
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